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Herein we report a morphologically selective synthesis of
nanocrystalline aluminum nitride (nano-AlN) by low-temper-
ature nitridation of nanocrystalline aluminum (nano-Al).1 Par-
ticle morphologies are varied from predominately equiaxed to
predominately whisker-like, apparently by the presence of vapor-
transport species during nitridation. Whisker formation appears
to be due to an increased volatility of aluminum induced by
the large surface area ofnano-Al and the action of volatile
aluminum chlorides. The altered electronic, magnetic, and
mechanical properties of nanocrystalline materials have received
much emphasis;2 our results illustrate their altered reactivities.3

To our knowledge, procedures allowing selective synthesis of
various nanoparticle morphologies by purposeful variations in
reaction conditions are rare.4

Air-sensitivenano-Al was produced by the catalytic decom-
position of H3Al(NMe2Et)5 with Ti(O-i-Pr)4 (0.05-1.2 mol %,
eq 1). Thenano-Al powders were 99 wt % Al by elemental

analysis,6 and mean crystallite dimensions of 40-180 nm were
determined by Scherrer analysis of XRD line broadening.7

Transmission electron microscopy (TEM) revealed 0.5-5 µm
aggregates of 10-200 nm Al crystallites (Figure 1a).
Reaction of thenano-Al with N2 at 1000-1100°C resulted

in complete conversion tonano-AlN (25-50 nm mean coher-
ence length by XRD).8 The morphology of thenano-AlN was
almost entirely equiaxed (Figure 1b) when purenano-Al or when
nano-Al mixed with an inert additive was heated at 20°C/min
to 1000 or 1100°C. The morphological distribution of the
nano-AlN was altered to favor the formation of nanowhiskers
by addition of AlCl3 to the nano-Al before heating or by
increasing the heating rate. Addition of AlCl3 also improved
the purity of the AlN produced.9 Increasing the amount of AlCl3
added and increasing the heating rate produced larger fractions
of nanowhiskers (up toca. 90%, Figure 1c).
Nanocrystalline AlN was also obtained by nitridation of

commercial 2 and 20µm Al10 under identical conditions. The
changes in the morphological distribution of thenano-AlN
produced from the commercial powders mirrored the changes
observed withnano-Al, but lower fractions of nanowhiskers
were obtained, and the nitridation did not go to completion.11

Microscopy of partially reacted samples revealed a significant
fraction of nanowhiskers in all cases and that addition of AlCl3

increased the whisker fraction.
The whiskers were single crystalline as shown by selected

area diffraction (SAD) and were generally 20-100 nm in
diameter with aspect ratios (length/diameter) of 20 to>100.
When 10 wt % of AlCl3 was added and a heating rate of 20
°C/min was used, most of the whiskers were straight, but
unusual growth morphologies were also observed such as bent,
curved, axe-shaped, hexagonal cone, and a hollow tube. When
93 wt % of AlCl3 was added and/or when a heating rate of
>50°C/min was used branched and comblike crystals were
common, indicating a significant change in growth kinetics that
made additional growth directions accessible.
Among the known whisker-growth mechanisms, the vapor-

liquid-solid (VLS) and vapor-solid (VS) mechanisms are the
most likely to function under the present conditions.12 In the
VLS mechanism, whiskers grow from liquid flux droplets
attached to whisker tips. We observed no such flux droplets,
and addition of various potential flux materials did not promote
whisker formation.12 Additionally, the variety of observed
crystallite morphologies and whisker-growth directions is more
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H3Al(NMe2Et)98

1,3,5-Me3C6H3

Ti(O-i-Pr)4 cat.

∼164°C
nano-Al + NMe2Et+ 3/2H2 (1)
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consistent with VS growth than with VLS growth.12

VS growth is apparently supported by the largenano-Al
surface area, which increases the effective steady-state Al vapor
pressure. TheequilibriumAl vapor pressure predicted by the
Kelvin equation13 is increased by at most 2-3% for thenano-
Al (44 nm mean coherence length) used. However, the system
is not in equilibrium because the Al vapor is reacting to form
AlN. The increased rate of evaporation afforded by the large
surface area ofnano-Al likely produces a largersteady-state
vapor pressure than is present over coarser Al particles. The
increased Al vapor pressure enables growth of a small number
of whiskers even when AlCl3 is not added. However, in the
absence of AlCl3, we observe that the whisker fraction decreases
significantly as the Al particles sinter and melt into larger
droplets, which become coated with AlN.
The dramatic increase in whisker fraction upon addition of

AlCl3 supports a mechanism in which AlCl3 acts as a transport
agent. AlCl3 did not maintain Al particle sizes at nanometer
dimensions; partially reacted Al/AlN droplets ranged from 5-15
µm with or withoutadded AlCl3, and nitridation of 2 or 20µm
Al with AlCl 3 added produced a large whisker fraction.
However, AlCl3 changed the morphology of the partially reacted
droplets. When no AlCl3 was added, all of the partially reacted
Al formed spherical balls covered with a stubble of AlN
particles.14 When 10 wt % of AlCl3 was added, about half of
the partially reacted Al formed spherical balls covered with long
fibers or whiskers and half of the Al formed starfish-like
particles which were partially nitrided, but had smooth surfaces.
In completely reacted samples to which 10 wt % AlCl3 had
been added, some of the AlN shells had holes revealing a
hollowed interior, indicating that Al was removed from the core
during the reaction. AlCl3 was likely thus a transport agent for
Al removal from partially nitrided droplets.
AlCl3(g) and Al(l) are known to form significant equilibrium

quantities of AlCl(g) at the nitridation temperatures employed.15

Therefore, it is likely that AlCl participates in the formation of
AlN whiskers as proposed in Figure 2. The mixture ofnano-
Al and AlCl3 produced a greater fraction of whiskers than did
the mixture of 2 or 20µm Al and AlCl3 because thenano-Al
affords a much larger surface area, which increases the rate of
the interfacial reaction between Al(l) and AlCl3.

Rapid heating rates and small Al particle sizes increase the
whisker fraction by maximizing the surface area and the AlCl3

concentration when the nitridation temperature is reached. The
reaction between Al(l) and N2 to form AlN begins atca. 1073
K, 140 K above the melting point of Al.7 A faster heating rate
reduces the time during which Al particles may coalesce before
nitridation begins, resulting in smaller droplet sizes. Once
nitridation begins further droplet growth is prevented by
formation of a shell of AlN particles. A faster heating rate also
decreases the amount of AlCl3 that sublimes out of the system
before nitridation begins, effectively increasing the concentration
of AlCl3 in the reacting system.
Thus, the enhanced reactivity ofnano-Al allows the low-

temperature synthesis of AlN with morphological control.
Direct surface nitridation ofcoarse-grained Al results in an AlN
surface coating that inhibits complete nitridation at the temper-
atures we employed.11,16 In contrast, the small particles innano-
Al are completely nitrided. Additionally, the high surface area
of nano-Al amplifies the proposed AlCl3/AlCl VS whisker-
growth mechanism, producing large yields of AlN nanowhiskers
that are among the smallest known.17
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Figure 1. TEM micrographs ofnano-Al from eq 1 (a) and the two principalnano-AlN morphologies produced from it:nano-AlN equiaxed
crystallites (b), and AlN nanowhiskers and a highly branched crystallite produced by adding 93 wt % AlCl3 and using a heating rate of 100°C/min
(c).

Figure 2. Proposed vapor-transport process for whisker growth.
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